Albert Einstein- Existential quantification (Wikipedia)
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as “there exists”, “there is at least one”, or “for some”. It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (“∃x” or “∃(x)” or “(∃x)”). Existential quantification is distinct from universal quantification (“for all”), which asserts that the property or relation holds for all members of the domain. Some sources use the term existentialization to refer to existential quantification.
- Albert Einstein (Wikipedia)
Albert Einstein (/ˈaɪnstaɪn/ EYEN-styne; German: [ˈalbɛʁt ˈʔaɪnʃtaɪn]; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Best known for developing the theory of relativity, he also made important contributions to the development of the theory of quantum mechanics. Relativity and quantum mechanics are the two pillars of modern physics. His mass–energy equivalence formula E = mc2, which arises from relativity theory, has been dubbed “the world’s most famous equation”. His work is also known for its influence on the philosophy of science. He received the 1921 Nobel Prize in Physics “for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect”, a pivotal step in the development of quantum theory. His intellectual achievements and originality resulted in “Einstein” becoming synonymous with “genius”. Einsteinium, one of the synthetic elements in the periodic table, was named in his honor.