- Reverse-engineering the surprisingly advanced ALU of the 8008 microprocessor (righto.com)
A computer’s arithmetic-logic unit (ALU) is the heart of the processor, performing arithmetic and logic operations on data. If you’ve studied digital logic, you’ve probably learned how to combine simple binary adder circuits to build an ALU. However, the 8008’s ALU uses clever logic circuits that can perform multiple operations efficiently. And unlike most 1970’s microprocessors, the 8008 uses a complex carry-lookahead circuit to increase its performance.
- How the bootstrap load made the historic Intel 8008 processor possible (righto.com)
Near the end of 1972, Intel introduced their first 8-bit microprocessor, the 8008. Decades later, this processor still influences computing; you probably use an x86 processor that is a descendent of the 8008. One unusual feature of the 8008 processor is its use of a “bootstrap load” or “bootstrap capacitor”, a special capacitor circuit to improve performance. Federico Faggin, who led the development of the 8008, is the main character in this story; he invented a new way to fabricate bootstrap capacitors for the Intel 4004 and 8008 processors and says it “proved essential to the microprocessor realization” and “without [the bootstrap load], there was no microprocessor.”
- Reverse-engineering the carry-lookahead circuit in the Intel 8008 processor (righto.com)
The 8008 was Intel’s first 8-bit microprocessor, introduced in 1972. While primitive by today’s standards, the 8008 is historically important because it essentially started the microprocessor revolution and is the ancestor of the modern x86 processor family. I’ve been studying the 8008’s silicon die under the microscope and reverse-engineering its circuitry.
- Analyzing the vintage 8008 processor from die photos: its unusual counters (righto.com)
The revolutionary Intel 8008 microprocessor is 45 years old today (March 13, 2017), so I figured it’s time for a blog post on reverse-engineering its internal circuits. One of the interesting things about old computers is how they implemented things in unexpected ways, and the 8008 is no exception. Compared to modern architectures, one unusual feature of the 8008 is it had an on-chip stack for subroutine calls, rather than storing the stack in RAM. And instead of using normal binary counters for the stack, the 8008 saved a few gates by using shift-register counters that generated pseudo-random values. In this article, I reverse-engineer these circuits from die photos and explain how they work.
- Die photos and analysis of the revolutionary 8008 microprocessor, 45 years old (righto.com)
Intel’s groundbreaking 8008 microprocessor was first produced 45 years ago. This chip, Intel’s first 8-bit microprocessor, is the ancestor of the x86 processor family that you may be using right now. I couldn’t find good die photos of the 8008, so I opened one up and took some detailed photographs. These new die photos are in this article, along with a discussion of the 8008’s internal design.
- Tracing the roots of the 8086 instruction set to the Datapoint 2200 minicomputer (righto.com)
The Intel 8086 processor started the x86 architecture that is still extensively used today. The 8086 has some quirky characteristics: it is little-endian, has a parity flag, and uses explicit I/O instructions instead of just memory-mapped I/O. It has four 16-bit registers that can be split into 8-bit registers, but only one that can be used for memory indexing. Surprisingly, the reason for these characteristics and more is compatibility with a computer dating back before the creation of the microprocessor: the Datapoint 2200, a minicomputer with a processor built out of TTL chips. In this blog post, I’ll look in detail at how the Datapoint 2200 led to the architecture of Intel’s modern processors, step by step through the 8008, 8080, and 8086 processors.
- 8008UM.pdf (8008.classiccmp.org)
The 8008 is a complete computer system central processor unit which may be interfaced with memories having capacities up to 16K bytes. The processor communicates over an 8-bit data and address bus and uses two leads for internal control and four leads for external control. The CPU contains an 8-bit parallel arithmetic unit, a dynamic RAM (seven 8-bit data registers and an 8x14 stack), and complete instruction decoding and control logic.
- Intel 8008 (Wikipedia)
The Intel 8008 (“eight-thousand-eight” or “eighty-oh-eight”) is an early 8-bit microprocessor capable of addressing 16 KB of memory, introduced in April 1972. The 8008 architecture was designed by Computer Terminal Corporation (CTC) and was implemented and manufactured by Intel. While the 8008 was originally designed for use in CTC’s Datapoint 2200 programmable terminal, an agreement between CTC and Intel permitted Intel to market the chip to other customers after Seiko expressed an interest in using it for a calculator.